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Abstract — A method using a fixed point technique is 
proposed for solving steady-state power transformer problems 
with the voltages of the windings and a DC bias in their 
current given.  Amending the T, Φ-Φ formulation with an 
additional voltage equation, the fixed point approach enables 
us to solve the problem in the discrete Fourier domain parallel 
at each transformed time step. The presented method is 
illustrated by a numerical example. 

I. INTRODUCTION 
Geomagnetically induced currents (GIC) are direct 

currents that enter and leave the directly earthed neutrals of 
high-voltage star connected windings, causing a DC bias in 
the magnetizing current of the transformer. The frequency 
of  GIC ranges typically from 0.001 Hz to 0.01 Hz, and the 
peak value could be up to 200 A [1]. The core is saturated 
during the half cycle in which the bias current is in the 
same direction as the magnetizing current, causing 
undesirable effects like increased noise, additional core 
losses as well as eddy current losses due to the higher 
leakage flux. 

An early analytical method allowing the transformer 
flux offset and exciting-current waveform to be determined 
for combined AC and GIC excitation is described in [2]. 
Magnetic circuit models based on two dimensional finite 
element techniques have been used in [3]. An experimental 
analysis has been given in [4]. A method based on three 
dimensional FEM to determine the waveform of the 
magnetizing current in a single phase transformer has been 
presented in [5]. In such investigations, the excitation is the 
time dependent current density in the transformer windings 
determined by the time function of the magnetizing current. 
A method using the voltage as excitation in conjunction 
with a current vector potential description has been 
proposed [6], without attempting to consider the DC bias. 
The problem is solved by a harmonic balance technique 
using a block Gauss-Seidel technique to separate the 
harmonics in [7]. 

This paper focuses on solving nonlinear steady-state 
power transformer problems under DC bias in the discrete 
Fourier domain. The voltages in the windings are directly 
used as the excitation. Applying the fixed point technique 
[8], there is no coupling between the transformed time steps 
within a nonlinear iteration and, hence, in contrast to the 
method of [7], they can be computed parallel. 

II. FINITE ELEMENT FORMULATION 
Applying the T,Φ-Φ formulation to the eddy current 

problem, the following partial differential equations have to 
be solved: 
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where ρ, μ, T, T0, and Φ are the resistivity, the 
permeability, the reduced electric vector potential, the 
impressed electric vector potential and the magnetic scalar 
potential, respectively. 

The impressed vector T0 can be written as it0 where i is 
the current of the coil. When the coil is driven by a voltage 
source, the current i is unknown and an additional voltage 
equation is needed [6]. Applying the Galerkin method to 
(1) as well as to the time derivative of (2) and 
supplementing the result by the additional voltage equation, 
one obtains 
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where S is the stiffness matrix depending on the resistivity, 
and the finite element matrices M, G, GT and L depending 
on the permeability are the mass matrix, the gradient 
matrix, the divergence matrix and the discrete Laplace 
matrix, respectively [8]. The matrices V, g and h 
correspond to t0t0μ, t0μ and t0μ, respectively [6]. The 
subscript h denotes the finite element approximations, i is 
the current of the coil, and u is the given voltage. 
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III. FIXED POINT METHOD 

Applying the fixed point method to linearize (3), the 
following iterative algorithm is obtained: 
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where  i(s+1), ( )1s
h

+T  and ( )1s
h
+Φ  are the unknowns in s-th 

iteration, the permeability μ(s) is calculated from the s-th 
solution and the fixed point parameter μ(s)

FP  is determined 
by μ(s) as presented in [8].  

To obtain the periodic solution in the time domain, an 
equidistant time discretization within one period (Δt=T/n) 
and a finite difference scheme are used for the time 
derivative. The equations of the T,Φ-Φ formulation with 
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the fixed point method associated with second and third 
rows of (4) are first solved after discrete Fourier 
transformation using the value of the current from the 
previous nonlinear iteration. All discrete Fourier 
components are independent, so they can be computed 
parallel [8]. 

For the 0-th discrete harmonic, i.e. the DC-components, 
the first and third rows of (4) vanish. According to the 
second row of (4), ( )1

,0
s

h
+T  is equal to 0. Since the DC 

component of the current is known, the discretization of (2) 
(i.e. the third row of (4) without the time derivative) can be 
solved for the 0-th discrete harmonic: 
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whereDF denotes the discrete Fourier transform  and ( )0
hΦ  

in the initial iteration is zero . 
Having computed T, Φ and μ at the s-th iteration, the 

calculation of the current is carried out separately. 
Applying the fixed point method to the voltage equation 
yields 
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where αk is the coefficient corresponding to the chosen 
discrete difference scheme. The k-th component of the 
current in the discrete Fourier transform is given by 
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the current at the l-th time step.  

 
Fig.1 . Model of power transformer with a three-limb core 

 
IV. NUMERICAL RESULTS 

The geometry of a three-limb core power transformer is 
shown in Fig.1, including the core, a winding with the 
magnetizing current and a tie bar carrying eddy currents. 
The model comprises 54 144 second-order hexahedral 
finite elements. The ferromagnetic materials of the core and 

of the tie bar are nonlinear. The winding is excited by a 
given sinusoidal voltage. 

The fixed point method with the time periodic technique 
uses 40 time steps. The waveform of the winding current at 
a DC component of 45A obtained by the present method is 
in good agreement with the result of [5] as shown in Fig.2. 

 
Fig. 2. Comparison of magnetizing current waveforms at DC bias of 45 A  

V. CONCLUSIONS 
We have presented a fixed pointed method to treat 

voltage driven power transformers under DC bias using the 
T,Φ-Φ formulation and an additional voltage equation. The 
finite element simulation of the power transformer under 
DC bias could be carried out without the prediction of the 
magnetizing current waveform of the windings and the 
steady state solution is obtained without stepping through 
transients. The computation of the discrete Fourier 
components can be carried out parallel. 
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